Gravitational collapse from cold uniform asymmetric initial conditions

Author:

Sylos Labini F.ORCID,Joyce M.

Abstract

Using controlled numerical N-body experiments, we show how, in the collapse dynamics of an initially cold and uniform distribution of particles with a generic asymmetric shape, finite N fluctuations and perturbations induced by the anisotropic gravitational field compete to determine the physical properties of the asymptotic quasi-stationary state. When finite N fluctuations dominate the dynamics, the particle energy distribution changes greatly and the final density profile decays outside its core as r−4 with an N-dependent amplitude. On the other hand, in the limit where the anisotropic perturbations dominate, the collapse is softer and the density profile shows a decay as r−3, as is typical of halos in cosmological simulations. However, even in this limit, convergence with N of the macroscopic properties of the virialized system, such as the particle energy distributions, the bound mass, and the density profile, is very slow and not clearly established, including for our largest simulations (with N ∼ 106). Our results illustrate the challenges of accurately simulating the first collapsing structures in standard-type cosmological models.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3