Drifting features: Detection and evaluation in the context of automatic RR Lyrae identification in the VVV

Author:

Cabral J. B.ORCID,Lares M.ORCID,Gurovich S.,Minniti D.,Granitto P. M.ORCID

Abstract

Context. As most of the modern astronomical sky surveys produce data faster than humans can analyse it, machine learning (ML) has become a central tool in astronomy. Modern ML methods can be characterised as highly resistant to some experimental errors. However, small changes in the data over long angular distances or long periods of time, which cannot be easily detected by statistical methods, can be detrimental to these methods. Aims. We develop a new strategy to cope with this problem, using ML methods in an innovative way to identify these potentially detrimental features. Methods. We introduce and discuss the notion of drifting features, related with small changes in the properties as measured in the data features. We use the identification techniques of RR Lyrae variable objects (RRLs) in the VVV based on an earlier work and introduce a method for detecting drifting features. For the VVV, each sky observation zone is called a tile. Our method forces the classifier to learn from the sources (mostly stellar ‘point sources’) which tile the source originated from and to select the features that are most relevant to the task of finding candidate drifting features. Results. We show that this method can efficiently identify a reduced set of features that contains useful information about the tile of origin of the sources. For our particular example of detecting RRLs in the VVV, we find that drifting features are mostly related to colour indices. On the other hand, we show that even if we have a clear set of drifting features in our problem, they are mostly insensitive to the identification of RRLs. Conclusions. Drifting features can be efficiently identified using ML methods. However, in our example removing drifting features does not improve the identification of RRLs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The VVV near-IR galaxy catalogue in a Northern part of the Galactic disc;Monthly Notices of the Royal Astronomical Society;2023-06-16

2. Variable star classification across the Galactic bulge and disc with the VISTA Variables in the Vía Láctea survey;Monthly Notices of the Royal Astronomical Society;2021-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3