Gas phase Elemental abundances in Molecular cloudS (GEMS) V. Methanol in Taurus

Author:

Spezzano S.,Fuente A.,Caselli P.,Vasyunin A.,Navarro-Almaida D.,Rodríguez-Baras M.,Punanova A.,Vastel C.,Wakelam V.

Abstract

Context. Methanol, one of the simplest complex organic molecules in the interstellar medium, has been shown to be present and extended in cold environments such as starless cores. Studying the physical conditions at which CH3OH starts its efficient formation is important to understand the development of molecular complexity in star-forming regions. Aims. We aim to study methanol emission across several starless cores and investigate the physical conditions at which methanol starts to be efficiently formed, as well as how the physical structure of the cores and their surrounding environment affect its distribution. Methods. Methanol and C18O emission lines at 3 mm have been observed with the IRAM 30 m telescope within the large programme Gas phase Elemental abundances in Molecular CloudS towards 66 positions across 12 starless cores in the Taurus Molecular Cloud. A non-LTE (local thermodynamic equilibrium) radiative transfer code was used to compute the column densities in all positions. We then used state-of-the-art chemical models to reproduce our observations. Results. We have computed N(CH3OH)/N(C18O) column density ratios for all the observed offsets, and the following two different behaviours can be recognised: the cores where the ratio peaks at the dust peak and the cores where the ratio peaks with a slight offset with respect to the dust peak (~10 000 AU). We suggest that the cause of this behaviour is the irradiation on the cores due to protostars nearby which accelerate energetic particles along their outflows. The chemical models, which do not take irradiation variations into account, can reproduce the overall observed column density of methanol fairly well, but they cannot reproduce the two different radial profiles observed. Conclusions. We confirm the substantial effect of the environment on the distribution of methanol in starless cores. We suggest that the clumpy medium generated by protostellar outflows might cause a more efficient penetration of the interstellar radiation field in the molecular cloud and have an impact on the distribution of methanol in starless cores. Additional experimental and theoretical work is needed to reproduce the distribution of methanol across starless cores.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3