Uncovering the ultimate planet impostor

Author:

Lillo-Box J.ORCID,Ribas Á.,Montesinos B.,Santos N. C.,Campante T.,Cunha M.,Barrado D.,Villaver E.,Sousa S.,Bouy H.,Aller A.,Corsaro E.,Li T.,Ong J. M. J.,Rebollido I.,Audenaert J.,Pereira F.

Abstract

Context. Exoplanet searches through space-based photometric time series have shown to be very efficient in recent years. However, follow-up efforts on the detected planet candidates have been demonstrated to be critical to uncover the true nature of the transiting objects. Aims. In this paper we show a detailed analysis of one of those false positives hidden as planetary signals. In this case, the candidate KOI-3886.01 showed clear evidence of a planetary nature from various techniques. Indeed, the properties of the fake planet set it among the most interesting and promising for the study of planetary evolution as the star leaves the main sequence. Methods. To unveil the true nature of this system, we present a complete set of observational techniques including high-spatial resolution imaging, high-precision photometric time series (showing eclipses, phase curve variations, and asteroseismology signals), high-resolution spectroscopy, and derived radial velocities to unveil the true nature of this planet candidate. Results. We find that KOI-3886.01 is an interesting false positive case: a hierarchical triple system composed by a ~K2 III giant star (KOI-3886 A) accompanied by a close-in eclipsing binary formed by a subgiant ~G4 IV star (KOI-3886 B) and a brown dwarf (KOI-3886 C). In particular, KOI-3886 C is one of the most irradiated brown dwarfs known to date, showing the largest radius in this substellar regime. It is also the first eclipsing brown dwarf known around an evolved star. Conclusions. In this paper we highlight the relevance of complete sets of follow-up observations to extrasolar planets detected by the transit technique using large-pixel photometers such as Kepler and TESS and, in the future, PLATO. In particular, multi-color high-spatial resolution imaging was the first hint toward ruling out the planet scenario in this system.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3