Sulfur ion irradiation experiments simulating space weathering of Solar System body surfaces

Author:

Ruf AlexanderORCID,Bouquet Alexis,Schmitt-Kopplin Philippe,Boduch Philippe,Mousis Olivier,Danger Grégoire

Abstract

Context. Sulfur (S) is of prime interest in the context of (astro)chemical evolution and habitability. However, the origin of S-bearing organic compounds in the Solar System is still not well constrained. Aims. We carried out laboratory experiments to test whether complex organosulfur compounds can be formed when surfaces of icy Solar System bodies are subject to high-energy S ions. Methods. Non-S-bearing organic residues, formed during the processing of astrophysical H2O:CH3OH:NH3-bearing ice analogs, were irradiated with 105 keV-S7+ ions at 10 K and analyzed by high-resolving FT-ICR-MS. The resulting data were comprehensively analyzed, including network analysis tools. Results. Out of several thousands of detected compounds, 16% contain at least one sulfur atom (organosulfur (CHNOS) compounds), as verified via isotopic fine structures. These residue-related organosulfur compounds are different from those formed during the S ion irradiation of ices at 10 K. Furthermore, insoluble, apolar material was formed during the sulfur irradiation of residues. Potential organosulfur precursors (CHNO molecules) were identified by means of molecular networks. Conclusions. This evidence of organosulfur compounds formed by sulfur irradiation of organic residues sheds new light onto the rich and complex scope of pristine organosulfur chemistry in the Solar System, presented in the context of current and future space missions. These results indicate that the space weathering of Solar System bodies may lead to the formation of organosulfur compounds.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3