ATOMIUM: halide molecules around the S-type AGB star W Aquilae

Author:

Danilovich T.ORCID,Van de Sande M.,Plane J. M. C.,Millar T. J.,Royer P.,Amor M. A.,Hammami K.,Decock L.,Gottlieb C. A.,Decin L.,Richards A. M. S.,De Beck E.,Baudry A.,Bolte J.,Cannon E.,De Ceuster F.,de Koter A.,Etoka S.,Gobrecht D.,Gray M.,Herpin F.,Homan W.,Jeste M.,Kervella P.,Khouri T.,Lagadec E.,Maes S.,Malfait J.,McDonald I.,Menten K. M.,Montargès M.,Müller H. S. P.,Pimpanuwat B.,Sahai R.,Wallström S. H. J.,Waters L. B. F. M.,Wong K. T.,Yates J.,Zijlstra A.

Abstract

Context. S-type asymptotic giant branch (AGB) stars are thought to be intermediates in the evolution of oxygen- to carbon-rich AGB stars. The chemical compositions of their circumstellar envelopes are also intermediate but have not been studied in as much detail as their carbon- and oxygen-rich counterparts. W Aql is a nearby S-type star, with well-known circumstellar parameters, making it an ideal object for in-depth study of less common molecules. Aims. We aim to determine the abundances of AlCl and AlF from rotational lines, which have been observed for the first time towards an S-type AGB star. In combination with models based on PACS observations, we aim to update our chemical kinetics network based on these results. Methods. We analyse ALMA observations towards W Aql of AlCl in the ground and first two vibrationally excited states and AlF in the ground vibrational state. Using radiative transfer models, we determine the abundances and spatial abundance distributions of Al35Cl, Al37Cl, and AlF. We also model HCl and HF emission and compare these models to PACS spectra to constrain the abundances of these species. Results. AlCl is found in clumps very close to the star, with emission confined within 0′′.1 of the star. AlF emission is more extended, with faint emission extending 0′′.2 to 0′′.6 from the continuum peak. We find peak abundances, relative to H2, of 1.7 × 10−7 for Al35Cl, 7 × 10−8 for Al37Cl, and 1 × 10−7 for AlF. From the PACS spectra, we find abundances of 9.7 × 10−8 and ≤10−8, relative to H2, for HCl and HF, respectively. Conclusions. The AlF abundance exceeds the solar F abundance, indicating that fluorine synthesised in the AGB star has already been dredged up to the surface of the star and ejected into the circumstellar envelope. From our analysis of chemical reactions in the wind, we conclude that AlF may participate in the dust formation process, but we cannot fully explain the rapid depletion of AlCl seen inthe wind.

Funder

FWO

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3