The thermal emission of Saturn’s icy moons

Author:

Ferrari C.ORCID,Lucas A.,Jacquemoud S.

Abstract

Context. The effects of space weathering and other alteration processes on the upper surface of Saturn’s icy moons are yet to be explored. Aims. We present a thermophysical model parametrised by way of regolith properties such as porosity, grain size, and composition, as well as the local topography. The modelled surface temperature and apparent emissivity are intended to be compared to measurements taken by Cassini’s Composite Infrared Spectrometer (CIRS), using its focal plane FP1. We study how they are impacted by the topographic model and the regolith properties. Methods. As an example, we coupled the topography of the Dione moon with our model. Simulations provide the thermal history of the surface elements of the shape model included in the FP1 footprints at the viewing geometries along one CIRS observation. The heat transfer in the regolith may occur through conduction or radiation. Its bolometric albedo, A, and hemispherical emissivity, εh, are expressed as a function of grain properties. Results. The model roughly reproduces the observed variations of surface temperature, TF, and apparent emissivity, εF, in the chosen example, while assuming uniform regolith properties. The dispersion of temperatures within the footprints due to the difference in local time of the surface elements explains most of the directionality of the apparent emissivity, εF (Em), at emission angles of Em ≥ 30°. Adding topography at the 8-km scale amplifies this effect by a few percent. Refining the scale to 1 km increases it again by a single percent but at a high computational cost. This particular anisotropy of εF (Em) cannot be explained by the directional emissivity, εd, of the regolith. The temperature TF is less affected by this dispersion or by the topographic resolution. Adding regional variations of grain size significantly improves the agreement between the model and observations. Conclusions. This model demonstrated its good performance and, thus, it is ready for testing current hypotheses on regolith processing by space weathering on Saturn’s icy moons, such as regional changes in grain size.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Packed media radiative-transfer modeling with Gaussian particles: Application to spectra of icy regolith of Saturnian satellites;Journal of Quantitative Spectroscopy and Radiative Transfer;2022-11

2. A Near-surface Temperature Model of Arrokoth;The Planetary Science Journal;2022-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3