SOLIS

Author:

Codella C.,Bianchi E.,Podio L.,Mercimek S.,Ceccarelli C.,López-Sepulcre A.,Bachiller R.,Caselli P.,Sakai N.,Neri R.,Fontani F.,Favre C.,Balucani N.,Lefloch B.,Viti S.,Yamamoto S.

Abstract

Context. Recent results in astrochemistry have revealed that some molecules, such as interstellar complex organic species and deuterated species, can serve as valuable tools in the investigation of star-forming regions. Sulphuretted species can also be used to follow the chemical evolution of the early stages of a Sun-like star formation process. Aims. The goal is to obtain a census of S-bearing species using interferometric images towards SVS13-A, a Class I object associated with a hot corino that is rich in interstellar complex organic molecules. Methods. To this end, we used the NGC 1333 SVS13-A data at 3 mm and 1.4 mm obtained with the IRAM-NOEMA interferometer in the framework of the SOLIS (Seeds of Life in Space) Large Program. The line emission of S-bearing species was imaged and analyzed using local thermodynamic equilibrium (LTE) and large velocity gradient (LVG) approaches. Results. We imaged the spatial distribution on ≤300 au scale of the line emission of 32SO, 34SO, C32S, C34S, C33S, OCS, H2C32S, H2C34S, and NS. The low excitation (9 K) 32SO line traces: (i) the low-velocity SVS13-A outflow and (ii) the fast (up to 100 km s−1 away from the systemic velocity) collimated jet driven by the nearby SVS13-B Class 0 object. Conversely, the rest of the lines are confined in the inner SVS13-A region, where complex organics were previously imaged. More specifically, the non-LTE LVG analysis of SO, SO2, and H2CS indicates a hot corino origin (size in the 60–120 au range). Temperatures between 50 K and 300 K, as well as volume densities larger than 105 cm−3 have been derived. The abundances of the sulphuretted are in the following ranges: 0.3–6 × 10−6 (CS), 7 × 10−9–1 × 10−7 (SO), 1–10 × 10−7 (SO2), a few 10−10 (H2CS and OCS), and 10−10–10−9 (NS). The N(NS)/N(NS+) ratio is larger than 10, supporting the assessment that the NS+ ion is mainly formed in the extended envelope. Conclusions. The [H2CS]/[H2CO] ratio, once measured at high-spatial resolutions, increases with time (from Class 0 to Class II objects) by more than one order of magnitude (from ≤10−2 to a few 10−1). This suggests that [S]/[O] changes along the process of Sun-like star formation. Finally, the estimate of the [S]/[H] budget in SVS13-A is 2–17% of the Solar System value (1.8 × 10−5), which is consistent with what was previously measured towards Class 0 objects (1–8%). This finding supports the notion that the enrichment of the sulphuretted species with respect to dark clouds remains constant from the Class 0 to the Class I stages of low-mass star formation. The present findings stress the importance of investigating the chemistry of star-forming regions using large observational surveys as well as sampling regions on the scale of the Solar System.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shocking Sgr B2 (N1) with its own outflow;Astronomy & Astrophysics;2024-01

2. ALMA ACA study of the H2S/OCS ratio in low-mass protostars;Astronomy & Astrophysics;2023-04

3. H2S and SO2 detectability in hot Jupiters;Astronomy & Astrophysics;2023-02

4. PRODIGE – envelope to disk with NOEMA;Astronomy & Astrophysics;2023-01

5. Gas phase Elemental abundances in Molecular cloudS (GEMS);Astronomy & Astrophysics;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3