Infrasound signals of fireballs detected by the Geostationary Lightning Mapper

Author:

Ott T.,Drolshagen E.,Koschny D.,Drolshagen G.,Pilger C.,Gaebler P.,Hupe P.,Mialle P.,Vaubaillon J.,Poppe B.

Abstract

Context. Fireballs are particularly bright meteors produced by large meteoroids or small asteroids that enter the Earth’s atmosphere. These objects, of sizes from some tens of centimetres to a few metres, are difficult to record with typical meteor detection methods. Therefore, their characteristics and fluxes are still not well known. Infrasound signals can travel particularly well through the atmosphere over large distances. Impacting meteoroids and asteroids can produce those signals, as well as space-detectable optical signatures. Aims. This paper aims to study and compare fireball data from the Geostationary Lightning Mappers (GLMs) on board the two Geostationary Observational Environmental Satellites (GOES-16 and GOES-17) and the data from the infrasound stations of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organisation (Vienna, Austria). The overall goal is a more accurate energy estimation of meteoroids and asteroids as well as a better understanding of both methods. Methods. The data consist of the brightest 50 events in the GLM database, as identified by recorded peak energy. For 24 of those fireballs, a significant signature could be identified in infrasound data. The data are supplemented by, if available, optical fireball data based on US government sensors on satellites provided by NASA’s Center for Near-Earth Object Studies (CNEOS). Results. The energies as computed from the GLM data range from 3.17 × 107 J up to 1.32 × 1012 J with a mean of 1.65 × 1011 J. The smallest meteoroid recorded by infrasound had an energy of about 1.8 × 109 J, the largest one of about 9.6 × 1013 J, and the mean energy is 5.2 × 1012 J. For 19 events, data were simultaneously available from all three data sources. A comparison between the energy values for the same event as determined from the different data sources indicates that CNEOS tends to give the lowest energy estimations. Analysis of infrasound data results in the largest derived energies. Conclusions. The energies derived using the three methods often deviate from one another by as much as an order of magnitude. This indicates a potential observational bias and highlights uncertainties in fireball energy estimation. By determining the fireball energy with another independent method, this study can help to better quantify and address this range of uncertainty.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference68 articles.

1. Detection and source parametrization of small-energy fireball events in Western Alps with ground-based infrasonic arrays

2. Bayesian characterization of explosive sources using infrasonic signals

3. Brachet N., Brown D., Le Bras R., et al. 2010, Infrasound Monitoring for Atmospheric Studies, eds. Le Pichon A., Blanc E., & Hauchecorne A. (Dordrecht: Springer)

4. The flux of small near-Earth objects colliding with the Earth

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3