A MUSE spectro-imaging study of the Th 28 jet: Precession in the inner jet

Author:

Murphy A.ORCID,Dougados C.,Whelan E. T.,Bacciotti F.ORCID,Coffey D.ORCID,Comerón F.ORCID,Eislöffel J.ORCID,Ray T. P.ORCID

Abstract

Context. Th 28 is a Classical T Tauri star in the Lupus 3 cloud that drives an extended bipolar jet. Previous studies of the inner jet identified signatures of rotation around the outflow axis, a key result for theories of jet launching. Thus this is an important source in which to investigate the poorly understood jet launching mechanism. Aims. In this study we investigate the morphology and kinematics of the Th 28 micro-jets, with the aim of characterising their structure and outflow activity, using optical integral-field spectroscopy observations obtained with VLT/MUSE. Methods. We use spectro-imaging and position–velocity maps to investigate the kinematic and morphological features of the jet and to obtain a catalogue of emission lines in which the jet is visible. A Lucy-Richardson deconvolution procedure is used to differentiate the structure of the inner micro-jet region in selected emission lines. Spatial profiles extracted perpendicular to the jet axis are fitted to investigate the jet width, opening angle, and the evolution of the jet axis. Results. We confirm the previously identified knot HHW2 within the red-shifted jet and identify three additional knots in each lobe for the first time. We also find [O III]λ5007 emission from the blue-shifted micro-jet, including the knot closest to the star. Proper motions for the innermost knots on each side are estimated to be 0′′.35 yr−1 and 0′′.47 yr−1 for the red- and blue-shifted jets, respectively. Based on this we show that new knots are ejected on an approximate timescale of 10–15 yr. Gaussian fitting to the jet axis centroids shows a point-symmetric wiggle within the inner portion of both micro-jets, indicating precession of the jet. We use the jet shape to measure a precession period of 8 yr, with a half-opening angle β < 0.6°. This precession may provide an alternative explanation for the rotation signatures previously reported. Conclusions. We find that these parameters are compatible with precession due to a brown dwarf companion orbiting at a separation of ≤0.3 au. Further observations with higher spatial resolution may help to clarify the source of this precession.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3