The young Hobson family: Possible binary parent body and low-velocity dispersal

Author:

Vokrouhlický D.,Brož M.,Novaković B.,Nesvorný D.

Abstract

Context. Asteroid families with ages younger than 1 Myr offer an interesting possibility of studying the outcomes of asteroid disruptions that are little modified by subsequent evolutionary processes. Aims. We analyze a very young asteroid family associated with (18777) Hobson in the central part of the main belt. We aim at (i) understanding its peculiar size distribution, and (ii) setting an upper limit on the characteristic dispersal velocity at subkilometer sizes corresponding to the smallest visible Hobson members. Methods. We identified the Hobson family using an up-to-date asteroid catalog. A significant increase in the number of its known members allowed us to study their size distribution and compare it with computer simulations of catastrophic disruptions. Backward orbital integrations of the heliocentric orbits allowed us to confirm the previously suggested age of Hobson and helped to estimate limits of the ejection speed. Results. The Hobson family has an unusual size distribution: two nearly equal-size bodies, followed by a population of smaller asteroids, whose distribution takes a characteristic power law. There are two possibilities to explain these data. Either a canonical impact onto a single parent body, requiring fine-tuned impact conditions that have not been studied so far, or an unconventional model for the parent object of the Hobson family, namely a binary with ≃7−9 km primary and a ≃2.5 km secondary. In the latter case, the primary was disrupted, leaving behind the largest remnant (18777) Hobson and a suite of subkilometer asteroids. The second largest asteroid, (57738) 2001 UZ160, is the nearly intact satellite of the parent binary. The excellent convergence of nominal orbits of Hobson members sets an upper limit of ≃(10−20) m s−1 for the initial dispersal velocity of the known members, which is consistent with both formation models. The Hobson family provides a so far rare opportunity of studying disruptions of small asteroids in a situation in which both the material strength and reaccumulation efficiency play an important role.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference57 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3