Photometric survey of 55 near-earth asteroids

Author:

Hromakina T.,Birlan M.,Barucci M. A.,Fulchignoni M.,Colas F.,Fornasier S.,Merlin F.,Sonka A.,Petrescu E.,Perna D.,Dotto E.,

Abstract

Context. Near-earth objects (NEOs), thanks to their proximity, provide a unique opportunity to investigate asteroids with diameters down to dozens of meters. The study of NEOs is also important because of their potential hazard to the Earth. The investigation of small NEOs is challenging from Earth as they are observable only for a short time following their discovery and can sometimes only be reached again years or decades later. Aims. We aim to derive the visible colors of NEOs and perform an initial taxonomic classification with a main focus on smaller objects and recent discoveries. Methods. Photometric observations were performed using the 1.2 m telescope at the Haute-Provence observatory and the 1.0 m telescope at the Pic du Midi observatory in broadband Johnson-Cousins and Sloan photometric systems. Results. We present new photometric observations for 55 NEOs. Our taxonomic classification shows that almost half (43%) of the objects in our sample are classified as S+Q-complex members, 19% as X-complex, 16% as C-complex, 12% as D-types, and finally 6% and 4% as A- and V-types, respectively. The distribution of the observed objects with H > 19 and H ≤ 19 remains almost the same. However, the majority of the objects in our dataset with D < 500 m belong to the “silicate” group, which is probably a result of an observational bias towards brighter and more accessible objects. “Carbonaceous” objects are predominant among those with a Jovian Tisserand parameter of Tj < 3. These bodies could be dormant or extinct comets. The median values of the absolute magnitude for “carbonaceous” and “silicate” groups are H = 18.10 ± 0.95 and H = 19.50 ± 1.20, whereas the estimated median diameters are D = 1219 ± 729 m and D = 344 ± 226 m, respectively. “Silicate” objects have a much lower median Earth’s minimum orbit intersection distance (MOID) and a somewhat lower orbital inclination in comparison to “carbonaceous” objects. About half of the observed objects are potentially hazardous asteroids and are mostly (almost 65%) represented by “silicate” objects.

Funder

Horizon 2020

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3