The most luminous blue quasars at 3.0 < z < 3.3

Author:

Lusso E.,Nardini E.,Bisogni S.,Risaliti G.,Gilli R.,Richards G. T.,Salvestrini F.,Vignali C.,Bargiacchi G.,Civano F.,Elvis M.,Fabbiano G.,Marconi A.,Sacchi A.,Signorini M.

Abstract

We analyse the properties of the high-ionisation C IVλ1549 broad emission line in connection with the X-ray emission of 30 bright, optically selected quasars at z ≃ 3.0−3.3 with pointed XMM-Newton observations, which were selected to test the suitability of active galactic nuclei as cosmological tools. In our previous work, we found that a large fraction (≈25%) of the quasars in this sample are X-ray under-luminous by factors of > 3−10. As absorbing columns of ≳1023 cm−2 can be safely ruled out, their weakness is most likely intrinsic. Here we explore possible correlations between the UV and X-ray features of these sources to investigate the origin of X-ray weakness with respect to X-ray-normal quasars at similar redshifts. We fit the UV spectra from the Sloan Digital Sky Survey of the quasars in our sample and analyse their C IV properties – for example equivalent width (EW) and line peak velocity (υpeak) – as a function of the X-ray photon index and 2−10 keV flux. We confirm the statistically significant trends of C IVυpeak and EW with UV luminosity at 2500 Å for both X-ray-weak and X-ray-normal quasars, as well as the correlation between X-ray weakness (parametrised through Δαox) and C IV EW. In contrast to some recent work, we do not observe any clear relation between the 2−10 keV luminosity and υpeak. We find a statistically significant correlation between the hard X-ray flux and the integrated C IV flux for X-ray-normal quasars, which extends across more than three (two) decades in C IV (X-ray) luminosity, whilst X-ray-weak quasars deviate from the main trend by more than 0.5 dex. We argue that X-ray weakness might be interpreted in a starved X-ray corona picture associated with an ongoing disc-wind phase. If the wind is ejected in the vicinity of the black hole, the extreme-UV radiation that reaches the corona will be depleted, depriving the corona of seed photons and generating an X-ray-weak quasar. Nonetheless, at the largest UV luminosities (> 1047 erg s−1) there will still be an ample reservoir of ionising photons that can explain the ‘excess’ C IV emission observed in the X-ray-weak quasars with respect to normal sources of similar X-ray luminosities.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3