STEPARSYN: A Bayesian code to infer stellar atmospheric parameters using spectral synthesis

Author:

Tabernero H. M.ORCID,Marfil E.ORCID,Montes D.ORCID,González Hernández J. I.ORCID

Abstract

Context. STEPARSYN is an automatic code written in Python 3.X designed to infer the stellar atmospheric parameters Teff, log g, and [Fe/H] of FGKM-type stars following the spectral synthesis method. Aims. We present a description of the STEPARSYN code and test its performance against a sample of late-type stars that were observed with the HERMES spectrograph mounted at the 1.2-m Mercator Telescope. This sample contains 35 late-type targets with well-known stellar parameters determined independently from spectroscopy. The code is available to the astronomical community in a GitHub repository. Methods. STEPARSYN uses a Markov chain Monte Carlo sampler to explore the parameter space by comparing synthetic model spectra generated on the fly to the observations. The synthetic spectra are generated with an spectral emulator. Results. We computed Teff, log g, and [Fe/H] for our sample stars and discussed the performance of the code. We calculated an internal scatter for these targets of −12 ± 117 K in Teff, 0.04 ± 0.14 dex in log g, and 0.05 ± 0.09 dex in [Fe/H]. In addition, we find that the log g values obtained with STEPARSYN are consistent with the trigonometric surface gravities to the 0.1 dex level. Finally, STEPARSYN can compute stellar parameters that are accurate down to 50 K, 0.1 dex, and 0.05 dex for Teff, log g, and [Fe/H] for stars with v sin i ≤ 30 km s−1.

Funder

Agencia estatal de investigación del ministerio de ciencia, innovación y universidades

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3