Frequency and nature of central molecular outflows in nearby star-forming disk galaxies

Author:

Stuber Sophia K.ORCID,Saito ToshikiORCID,Schinnerer EvaORCID,Emsellem EricORCID,Querejeta Miguel,Williams Thomas G.ORCID,Barnes Ashley T.,Bigiel FrankORCID,Blanc GuillermoORCID,Dale Daniel A.,Grasha KathrynORCID,Klessen Ralf,Kruijssen J. M. DiederikORCID,Leroy Adam K.,Meidt SharonORCID,Pan Hsi-AnORCID,Rosolowsky ErikORCID,Schruba Andreas,Sun JiayiORCID,Usero AntonioORCID

Abstract

Central molecular outflows in spiral galaxies are assumed to modulate their host galaxy’s star formation rate (SFR) by removing gas from the inner region of the galaxy. Outflows consisting of different gas phases appear to be a common feature in local galaxies, yet, little is known about the frequency of molecular outflows in main sequence galaxies in the nearby universe. We develop a rigorous set of selection criteria, which allow the reliable identification of outflows in large samples of galaxies. Our criteria make use of central spectra, position-velocity diagrams and velocity-integrated intensity maps (line-wing maps). We use this method on high-angular resolution CO (2–1) observations from the PHANGS-ALMA survey, which provides observations of the molecular gas for a homogeneous sample of 90 nearby main sequence galaxies at a resolution of ∼100 pc. We find correlations between the assigned outflow confidence and stellar mass or global SFR. We determine the frequency of central molecular outflows to be 25 ± 2% considering all outflow candidates, or 20 ± 2% for secure outflows only. Our resulting outflow candidate sample of 16−20 galaxies shows an overall enhanced fraction of active galactic nuclei (AGN) (50%) and bars (89%) compared to the full sample (galaxies with AGN: 24%, with bar: 61%). We extend the trend between mass outflow rates and SFR known for high outflow rates down to lower values (log10 out [M yr−1] < 0). Mass loading factors are of order unity, indicating that these outflows are not efficient in quenching the SFR in main sequence galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3