Exoplanets with ELT-METIS

Author:

Bowens R.ORCID,Meyer M. R.,Delacroix C.,Absil O.ORCID,van Boekel R.,Quanz S. P.ORCID,Shinde M.,Kenworthy M.ORCID,Carlomagno B.,Orban de Xivry G.ORCID,Cantalloube F.ORCID,Pathak P.

Abstract

Direct imaging is a powerful exoplanet discovery technique that is complementary to other techniques and offers great promise in the era of 30 m class telescopes. Space-based transit surveys have revolutionized our understanding of the frequency of planets at small orbital radii around Sun-like stars. The next generation of extremely large ground-based telescopes will have the angular resolution and sensitivity to directly image planets with R < 4 R around the very nearest stars. Here, we predict yields from a direct imaging survey of a volume-limited sample of Sun-like stars with the Mid-Infrared ELT Imager and Spectrograph (METIS) instrument, planned for the 39 m European Southern Observatory Extremely Large Telescope (ELT) that is expected to be operational towards the end of the decade. Using Kepler occurrence rates, a sample of stars with spectral types A-K within 6.5 pc, and simulated contrast curves based on an advanced model of what is achievable from coronagraphic imaging with adaptive optics, we estimated the expected yield from METIS using Monte Carlo simulations. We find the METIS expected yield of planets in the N2 band (10.10−12.40 μm) is 1.14 planets, which is greater than comparable observations in the L (3.70−3.95 μm) and M (4.70−4.90 μm) bands. We also determined a 24.6% chance of detecting at least one Jovian planet in the background limited regime assuming a 1 h integration. We calculated the yield per star and estimate optimal observing revisit times to increase the yield. We also analyzed a northern hemisphere version of this survey and found there are additional targets worth considering. In conclusion, we present an observing strategy aimed to maximize the possible yield for limited telescope time, resulting in 1.48 expected planets in the N2 band.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference84 articles.

1. Visual Multiples. IX. MK Spectral Types

2. Models of giant planet formation with migration and disc evolution

3. Searching for Planets Orbiting α Cen A with the James Webb Space Telescope

4. Beuzit J. L., Feldt M., Dohlen K., et al. 2008, in Ground-based and Airborne Instrumentation for Astronomy II, eds. McLean I. S., & Casali M. M., SPIE Conf. Ser., 7014, 701418

5. Radial Velocity Discovery of an Eccentric Jovian World Orbiting at 18 au

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3