Modeling accretion shocks at the disk–envelope interface

Author:

van Gelder M. L.ORCID,Tabone B.ORCID,van Dishoeck E. F.ORCID,Godard B.

Abstract

Context. As material from an infalling protostellar envelope hits the forming disk, an accretion shock may develop which could (partially) alter the envelope material entering the disk. Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) indicate that emission originating from warm SO and SO2 might be good tracers of such accretion shocks. Aims. The goal of this work is to test under what shock conditions the abundances of gas-phase SO and SO2 increase in an accretion shock at the disk–envelope interface. Methods. Detailed shock models including gas dynamics were computed using the Paris-Durham shock code for nonmagnetized J-type accretion shocks in typical inner envelope conditions. The effect of the preshock density, shock velocity, and strength of the ultraviolet (UV) radiation field on the abundance of warm SO and SO2 is explored. Compared with outflows, these shocks involve higher densities (~107 cm−3), lower shock velocities (~few km s−1), and large dust grains (~0.2 μm) and thus probe a different parameter space. Results. Warm gas-phase chemistry is efficient in forming SO under most J-type shock conditions considered. In lower-velocity (~3 km s−1) shocks, the abundance of SO is increased through subsequent reactions starting from thermally desorbed CH4 toward H2CO and finally SO. In higher velocity (≳4 km s−1) shocks, both SO and SO2 are formed through reactions of OH and atomic S. The strength of the UV radiation field is crucial for SO and in particular SO2 formation through the photodissociation of H2O. Thermal desorption of SO and SO2 ice is only relevant in high-velocity (≳5 km s−1) shocks at high densities (≳107 cm−3). Both the composition in the gas phase, in particular the abundances of atomic S and O, and in ices such as H2S, CH4, SO, and SO2 play a key role in the abundances of SO and SO2 that are reached in the shock. Conclusions. Warm emission from SO and SO2 is a possible tracer of accretion shocks at the disk–envelope interface as long as a local UV field is present. Observations with ALMA at high-angular resolution could provide further constraints given that other key species for the gas-phase formation of SO and SO2, such as H2S and H2CO, are also covered. Moreover, the James Webb Space Telescope will give access to other possible slow, dense shock tracers such as H2, H2O, and [S I] 25 μm.

Funder

Dutch Research Council

Netherlands Research School for Astronomy

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. C/O Ratios and the Formation of Wide-separation Exoplanets;The Astrophysical Journal Letters;2024-07-01

2. PRODIGE – envelope to disk with NOEMA;Astronomy & Astrophysics;2024-06

3. ALMA Spectral Survey of an Eruptive Young Star, V883 Ori (ASSAY). I. What Triggered the Current Episode of Eruption?;The Astrophysical Journal;2024-04-29

4. FAUST XII. Accretion streamers and jets in the VLA 1623–2417 protocluster;Monthly Notices of the Royal Astronomical Society;2024-02-14

5. Cloudlet capture model for the accretion streamer onto the disc of DG Tau;Monthly Notices of the Royal Astronomical Society;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3