Solar Orbiter’s encounter with the tail of comet C/2019 Y4 (ATLAS): Magnetic field draping and cometary pick-up ion waves

Author:

Matteini L.ORCID,Laker R.,Horbury T.ORCID,Woodham L.,Bale S. D.ORCID,Stawarz J. E.ORCID,Woolley T.,Steinvall K.ORCID,Jones G. H.ORCID,Grant S. R.ORCID,Afghan Q.ORCID,Galand M.ORCID,O’Brien H.,Evans V.,Angelini V.,Maksimovic M.ORCID,Chust T.,Khotyaintsev Y.ORCID,Krasnoselskikh V.,Kretzschmar M.,Lorfèvre E.,Plettemeier D.,Souček J.,Steller M.,Štverák Š.,Trávníček P.,Vaivads A.,Vecchio A.,Wimmer-Schweingruber R. F.,Ho G. C.,Gómez-Herrero R.,Rodríguez-Pacheco J.,Louarn P.,Fedorov A.,Owen C. J.,Bruno R.,Livi S.,Zouganelis I.,Müller D.

Abstract

Context. Solar Orbiter is expected to have flown close to the tail of comet C/2019 Y4 (ATLAS) during the spacecraft’s first perihelion in June 2020. Models predict a possible crossing of the comet tails by the spacecraft at a distance from the Sun of approximately 0.5 AU. Aims. This study is aimed at identifying possible signatures of the interaction of the solar wind plasma with material released by comet ATLAS, including the detection of draped magnetic field as well as the presence of cometary pick-up ions and of ion-scale waves excited by associated instabilities. This encounter provides us with the first opportunity of addressing such dynamics in the inner Heliosphere and improving our understanding of the plasma interaction between comets and the solar wind. Methods. We analysed data from all in situ instruments on board Solar Orbiter and compared their independent measurements in order to identify and characterize the nature of structures and waves observed in the plasma when the encounter was predicted. Results. We identified a magnetic field structure observed at the start of 4 June, associated with a full magnetic reversal, a local deceleration of the flow and large plasma density, and enhanced dust and energetic ions events. The cross-comparison of all these observations support a possible cometary origin for this structure and suggests the presence of magnetic field draping around some low-field and high-density object. Inside and around this large scale structure, several ion-scale wave-forms are detected that are consistent with small-scale waves and structures generated by cometary pick-up ion instabilities. Conclusions. Solar Orbiter measurements are consistent with the crossing through a magnetic and plasma structure of cometary origin embedded in the ambient solar wind. We suggest that this corresponds to the magnetotail of one of the fragments of comet ATLAS or to a portion of the tail that was previously disconnected and advected past the spacecraft by the solar wind.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3