Abstract
Asymptotic giant branch (AGB) stars are considered to be among the most significant contributors to the fluorine budget in our Galaxy. While observations and theory agree at close-to-solar metallicity, stellar models at lower metallicities overestimate the fluorine production with respect to that of heavy elements. We present 19F nucleosynthesis results for a set of AGB models with different masses and metallicities in which magnetic buoyancy acts as the driving process for the formation of the 13C neutron source (the so-called 13C pocket). We find that 19F is mainly produced as a result of nucleosynthesis involving secondary 14N during convective thermal pulses, with a negligible contribution from the 14N present in the 13C pocket region. A large 19F production is thus prevented, resulting in lower fluorine surface abundances. As a consequence, AGB stellar models with mixing induced by magnetic buoyancy at the base of the convective envelope agree well with available fluorine spectroscopic measurements at low and close-to-solar metallicity.
Funder
German-Israeli Foundation
Agencia Estatal de Investigación of the Spanish Ministerio de Ciencia e Inno- vación
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献