From the Circumnuclear Disk in the Galactic Center to thick, obscuring tori of AGNs

Author:

Vollmer B.,Davies R. I.,Gratier P.,Lizée Th.,Imanishi M.,Gallimore J. F.,Impellizzeri C. M. V.,García-Burillo S.,Le Petit F.

Abstract

The high accretion rates needed to fuel the central black hole in a galaxy can be achieved via viscous torques in thick disks and rings, which can be resolved by millimeter interferometry within the inner ∼20 pc of the active galaxy NGC 1068 at comparable scales and sensitivity to single dish observations of the Circumnuclear Disk (CND) in the Galactic Center. To interpret observations of these regions and determine the physical properties of their gas distribution, we present a modeling effort that includes the following: (i) simple dynamical simulations involving partially inelastic collisions between disk gas clouds; (ii) an analytical model of a turbulent clumpy gas disk calibrated by the dynamical model and observations; (iii) local turbulent and cosmic ray gas heating and cooling via H2O, H2, and CO emission; and (iv) determination of the molecular abundances. We also consider photodissociation regions (PDRs) where gas is directly illuminated by the central engine. We compare the resulting model datacubes of the CO, HCN, HCO+, and CS brightness temperatures to available observations. In both cases the kinematics can be explained by one or two clouds colliding with a preexisting ring, in a prograde sense for the CND and retrograde for NGC 1068. And, with only dense disk clouds, the line fluxes can be reproduced to within a factor of about two. To avoid self-absorption of the intercloud medium, turbulent heating at the largest scales, comparable to the disk height, has to be decreased by a factor of 50–200. Our models indicate that turbulent mechanical energy input is the dominant gas-heating mechanism within the thick gas disks. Turbulence is maintained by the gain of potential energy via radial gas accretion, which is itself enhanced by the collision of the infalling cloud. In NGC 1068, we cannot exclude that intercloud gas significantly contributes to the molecular line emission. In this object, while the bulk of the X-ray radiation of the active galactic nucleus is absorbed in a layer of Compton-thick gas inside the dust sublimation radius, the optical and UV radiation may enhance the molecular line emission from photodissociation regions by ∼50% at the inner edge of the gas ring. Infrared pumping may also increase the HCN(3−2) line flux throughout the gas ring by about a factor of two. Our models support the scenario of infalling gas clouds onto preexisting gas rings in galactic centers, and it is viable and consistent with available observations of the CND in the Galactic Center and the dense gas distribution within the inner 20 pc of NGC 1068.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3