An update of the correlation between polarimetric and thermal properties of cometary dust

Author:

Kwon Yuna G.ORCID,Kolokolova LudmillaORCID,Agarwal JessicaORCID,Markkanen Johannes

Abstract

Context. Comets are conglomerates of ice and dust particles, the latter of which encode information on changes in the radiative and thermal environments. Dust displays distinctive scattered and thermal radiation in the visible and mid-infrared (MIR) wavelengths, respectively, based on its inherent characteristics. Aims. We aim to identify a possible correlation between the properties of scattered and thermal radiation from dust and the principal dust characteristics responsible for this relationship, and therefrom gain insights into comet evolution. Methods. We use the NASA/PDS archival polarimetric data on cometary dust in the red (0.62−0.73 μm) and K (2.00−2.39 μm) domains to leverage the relative excess of the polarisation degree of a comet to the average trend at the given phase angle (Pexcess) as a metric of the dust’s scattered light characteristics. The flux excess of silicate emissions to the continuum around 10 μm (FSi/Fcont) is adopted from previous studies as a metric of the dust’s MIR feature. Results. The two observables – Pexcess and FSi/Fcont – show a positive correlation when Pexcess is measured in the K domain (Spearman’s rank correlation coefficient ρ = 0.71−0.19+0.10). No significant correlation was identified in the red domain (ρ = 0.13−0.15+0.16). The gas-rich comets have systematically weaker FSi/Fcont than the dust-rich ones, and yet both groups retain the same overall tendency with different slope values. Conclusions. The observed positive correlation between the two metrics indicates that composition is a peripheral factor in characterising the dust’s polarimetric and silicate emission properties. The systematic difference in FSi/Fcont for gas-rich versus dust-rich comets would instead correspond to the difference in their dust size distribution. Hence, our results suggest that the current MIR spectral models of cometary dust, which search for a minimum χ2 fit by considering various dust properties simultaneously, should prioritise the dust size and porosity over the composition. With light scattering being sensitive to different size scales in two wavebands, we expect the K-domain polarimetry to be sensitive to the properties of dust aggregates, such as size and porosity, which might have been influenced by evolutionary processes. On the other hand, the red-domain polarimetry reflects the characteristics of sub-micrometre constituents in the aggregate.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3