Calibrated gas accretion and orbital migration of protoplanets in 1D disc models

Author:

Schib O.ORCID,Mordasini C.ORCID,Helled R.ORCID

Abstract

Context. Orbital migration and gas accretion are two interdependent key processes that govern the evolution of planets in protoplanetary discs. The final planetary properties such as masses and orbital periods strongly depend on the treatment of those two processes. Aims. Our aim is to develop a simple prescription for migration and accretion in 1D disc models, calibrated with results of 3D hydro-dynamic simulations. Our focus lies on non-self-gravitating discs, but we also discuss to what degree our prescription could be applied when the discs are self-gravitating. Methods. We studied migration using torque densities. Our model for the torque density is based on existing fitting formulas, which we subsequently modify to prevent premature gap-opening. At higher planetary masses, we also apply torque densities from hydrody-namic simulations directly to our 1D model. These torque densities allow us to model the orbital evolution of an initially low-mass planet that undergoes runaway-accretion to become a massive planet. The two-way exchange of angular momentum between disc and planet is included. This leads to a self-consistent treatment of gap formation that only relies on directly accessible disc parameters. We present a formula for Bondi and Hill gas accretion in the disc-limited regime. This formula is self-consistent in the sense that mass is removed from the disc in the location from where it is accreted. The prescription is appropriate when the planet is smaller than, comparable to, or larger than the disc scale height. Results. We find that the resulting evolution in mass and semi-major axis in the 1D framework is in good agreement with those from 3D hydrodynamical simulations for a range of parameters. Conclusions. Our prescription is valuable for simultaneously modelling migration and accretion in 1D models, which allows a planet’s evolution to be followed over the entire lifetime of a disc. It is applicable also in situations where the surface density is significantly disturbed by multiple gap-opening planets or processes like infall. We conclude that it is appropriate and beneficial to apply torque densities from hydrodynamic simulations in 1D models, at least in the parameter space we study here. More work is needed in order to determine whether our approach is also applicable in an even wider parameter space and in situations with more complex disc thermodynamics, or when the disc is self-gravitating.

Funder

SNSF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3