Aligned fractures on asteroid Ryugu as an indicator of thermal fracturing

Author:

Schirner L.ORCID,Otto K. A.,Delbo M.,Matz K.-D.,Sasaki S.,Sugita S.

Abstract

Context. Asteroid and comet surfaces are exposed to a complex environment that includes low gravity, high temperature gradients, and a bombardment of micrometeorites and cosmic rays. Surface material exposed to this environment evolves in a specific way depending on various factors such as the bodies’ size, heliocentric distance, and composition. Fractures in boulders, as seen on asteroid Ryugu, can help to determine and constrain the dominant processes eroding small-body surface materials. It is also possible to estimate fracture growth timescales based on the abundance and length of fractures in boulders. Aims. We analyse the number, orientation, and length of fractures on asteroid Ryugu to establish the relation between the fractures and the processes that may have formed them. We also compare our results to similar investigations conducted on other small bodies and estimate the timescale of fracture growth. Methods. 198 high-resolution Hayabusa2 images of asteroid Ryugu suitable for our fracture analysis were selected and map-projected. Within these images, fractures in boulders were manually mapped using the QGIS software. The fracture coordinates were extracted and the fractures’ orientation and length were computed for 1521 identified fractures. Results. Fractures in boulders on asteroid Ryugu are found to be preferentially north-south aligned, suggesting a formation through thermal erosion. Modeling the fracture length indicates a fracture growth timescale of 30 000 to 40 000 yr, slightly younger than ages found previously for asteroid Bennu. The errors in these ages, due to uncertainties about the thermophysical parameters used in this model, are substantial (−33 000 yr +250 000 yr). However, even with these large errors, the model suggests that thermal fracturing is a geologically fast process. These times are not too dissimilar to those quoted in the literature for Ryugu and Bennu, since similar thermophysical material parameters for Ryugu and Bennu seem likely.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Luleå Tekniska Universitet

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3