Effects of scattering in the accretion funnel on the pulse profiles of accreting millisecond pulsars

Author:

Ahlberg VarpuORCID,Poutanen JuriORCID,Salmi TuomoORCID

Abstract

The hotspot emission of accreting millisecond pulsars (AMPs) undergoes scattering in the accretion flow between the disk inner radius and the neutron star surface. The scattering optical depth of the flow depends on the photon emission angle, which is a function of the pulse phase, and reaches its maximum when the hotspot is closest to the observer. At sufficiently large optical depths the observed pulse profile should develop a secondary minimum, the depth of which depends on the accretion rate and the emission geometry. Such a dip evolving with the accretion rate might explain the phase shift and pulse profile evolution observed in AMPs during outbursts. Accounting for scattering is important for accurate modeling of the AMP pulse profiles in order to improve the accuracy of determination of the neutron star parameters, such as their masses and radii. In this paper we present a simplified analytical model for the Thomson optical depth of the accretion funnel, and apply it to simulating the pulse profiles. We show that scattering in the accretion funnel has a significant effect on the pulse profiles at accretion rates of M ≳ 10−10 Myr−1. Our model predicts a gradual evolution of the pulse profile with the accretion rate that appears to be consistent with the observations.

Funder

Academy of Finland

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3