Eccentric black hole mergers via three-body interactions in young, globular, and nuclear star clusters

Author:

Dall’Amico MarcoORCID,Mapelli MichelaORCID,Torniamenti StefanoORCID,Arca Sedda ManuelORCID

Abstract

Eccentric mergers are a signature of the dynamical formation channel of binary black holes (BBHs) in dense stellar environments and hierarchical triple systems. Here, we investigate the formation of eccentric mergers via binary-single interactions by means of 2.5 × 105 direct N-body simulations. Our simulations include post-Newtonian terms up to the 2.5th order and model the typical environment of young (YSCs), globular (GCs), and nuclear star clusters (NSCs). Around 0.6% (1%) of our mergers in NSCs (GCs) have an eccentricity > 0.1 when the emitted gravitational wave frequency is 10 Hz in the source frame, while in YSCs this fraction rises to 1.6%. Approximately ∼63% of these mergers are produced by chaotic, resonant interactions where temporary binaries are continuously formed and destroyed, while ∼31% arise from an almost direct collision of two black holes (BHs). Lastly, ∼6% of these eccentric mergers occur in temporary hierarchical triples. We find that binaries undergoing a flyby generally develop smaller tilt angles with respect to exchanges. This result challenges the idea that perfectly isotropic spin orientations are produced by dynamics. The environment dramatically affects BH retention: 0%, 3.1%, and 19.9% of all the remnant BHs remain in YSCs, GCs, and NSCs, respectively. The fraction of massive BHs also depends on the host cluster properties, with pair-instability (60 ≤ MBH/M ≤ 100) and intermediate-mass (MBH ≥ 100 M) BHs accounting for approximately ∼44% and 1.6% of the mergers in YSCs, ∼33% and 0.7% in GCs, and ∼28% and 0.4% in NSCs, respectively.

Funder

Fondazione Cassa di Risparmio di Padova e Rovigo

HORIZON EUROPE Marie Sklodowska-Curie Actions

European Research Council

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3