Accelerated particle beams in a 3D simulation of the quiet Sun

Author:

Frogner L.ORCID,Gudiksen B. V.ORCID

Abstract

Context. Charged particles are constantly accelerated to non-thermal energies by the reconnecting magnetic field in the solar atmosphere. Our understanding of the interactions between the accelerated particles and their environment can benefit considerably from three-dimensional atmospheric simulations that account for non-thermal particle beam generation and propagation. In a previous publication, we presented the first results from such a simulation, which considers quiet Sun conditions. However, the original treatment of beam propagation ignores potentially important phenomena such as the magnetic gradient forces associated with a converging or diverging magnetic field. Aims. Here we present a more general beam propagation model incorporating magnetic gradient forces, the return current, acceleration by the ambient electric field, corrected collision rates due to the ambient temperature, and collisions with heavier elements than hydrogen and the free electrons they contribute. Neglecting collisional velocity randomisation makes the model sufficiently lightweight to simulate millions of beams. We investigate how each new physical effect in the model changes the non-thermal energy transport in a realistic three-dimensional atmosphere. Methods. We applied the method of characteristics to the steady-state continuity equation for electron flux to derive ordinary differential equations for the mean evolution of energy, pitch angle, and flux with distance. For each beam, we solved these numerically for a range of initial energies to obtain the evolving flux spectrum, from which we computed the energy deposited into the ambient plasma. Results. Magnetic gradient forces significantly influence the spatial distribution of deposited beam energy. The magnetic field converges strongly with depth in the corona above loop footpoints. This convergence leads to a small coronal peak in deposited energy followed by a heavy dip caused by the onset of magnetic mirroring. Magnetically reflected electrons carry away 5 to 10% of the injected beam energy on average. The remaining electrons are relatively energetic and produce a peak in deposited energy below the transition region a few hundred kilometres deeper than they would in a uniform magnetic field. A diverging magnetic field at the beginning of the trajectory, which is common in the simulation, enhances the subsequent impact of magnetic mirroring. The other new physical effects do not qualitatively alter the picture of non-thermal energy transport for the atmospheric conditions under consideration.

Funder

Norges Forskningsråd

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3