Bisymmetric pupil modification deconvolution strategy for differential optical transfer function (dOTF) wavefront sensing

Author:

Martinez P.,Dharmadhikari R.ORCID

Abstract

Context. The differential optical transfer function (dOTF) is a model-independent image-based wavefront sensor for measuring the complex pupil field (phase and amplitude). This method is particularly suitable for compensating non-common path aberrations or for the phasing of segmented telescopes that often prevent the so-called diffraction-limit resolution from being achieved with real-world instruments. Aims. The main problem inherent to the dOTF approach is to address the effect of the convolution. The resolution of the recovered complex pupil field is impacted by the size of the pupil modification. The complex pupil field estimated by the dOTF is blurred by convolution with the complex conjugate of the pupil modification. If the pupil modification involves a non-negligible region of the pupil (actuator or segment poke), it causes significant blurring and resolution loss. Methods. We propose a bisymmetric pupil modification deconvolution strategy to solve this problem. We use two different dOTFs with the opposite-sign pupil modification to identify the pupil modification location and four dOTFs with a symmetric pupil modification to complete the knowledge of their impact on the complex pupil field prior to the deconvolution process in the Fourier domain. The proposed strategy solves the intrinsic limitation of a former deconvolution algorithm, namely the cross-iteration deconvolution algorithm, which is restricted to amplitude pupil modification and precludes its applicability to phase pupil modification. Results. The bissymetric pupil modification deconvolution strategy is a novel probing pattern that permits the extension of iterative cross-deconvolution to phase-only probes. The effectiveness of the proposed approach has been validated analytically and with numerical simulations. Conclusions. The bisymmetric pupil modification deconvolution strategy can improve the resolution and accuracy of dOTF wavefront sensing and contributes to efficient and precise image-based wavefront sensing techniques.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3