Narrow absorption lines from intervening material in supernovae

Author:

González-Gaitán SantiagoORCID,Gutiérrez Claudia P.ORCID,Anderson Joseph P.ORCID,Morales-Garoffolo AntoniaORCID,Galbany LluisORCID,Goswami Sabyasachi,Mourão Ana M.ORCID,Mattila SeppoORCID,Sullivan MarkORCID

Abstract

Narrow absorption features in nearby supernova (SN) spectra are a powerful diagnostic of the slow-moving material in the line of sight: they are extensively used to infer dust extinction from the host galaxies, and they can also serve in the detection of circumstellar material originating from the SN progenitor and present in the vicinity of the explosion. Despite their wide use, very few studies have examined the biases of the methods to characterize narrow lines, and not many statistical analyses exist. This is the first paper of a series in which we present a statistical analysis of narrow lines of SN spectra of various resolutions. We developed a robust automated methodology to measure the equivalent width (EW) and velocity of narrow absorption lines from intervening material in the line of sight of SNe, including Na I D, Ca II H&K, K I, and diffuse interstellar bands. We carefully studied systematic biases in heterogeneous spectra from the literature by simulating different signal-to-noise, spectral resolution, size and orientation of the slit, and we present the real capabilities and limitations of using low- and mid-resolution spectra to study these lines. In particular, we find that the measurement of the EW of the narrow lines in low-resolution spectra is highly affected by the evolving broad P-Cygni profiles of the SN ejecta, both for core-collapse and type Ia SNe, inducing a conspicuous apparent evolution. Such pervading non-physical evolution of narrow lines might lead to wrong conclusions on the line-of-sight material, for example concerning circumstellar material ejected from the SN progenitors. We thus present an easy way to detect and exclude those cases to obtain more robust and reliable measurements. Finally, after considering all possible effects, we analysed the temporal evolution of the narrow features in a large sample of nearby SNe to detect any possible variation in their EWs over time. We find no time evolution of the narrow line features in our large sample for all SN types.

Funder

Academy of Finland

Marie Curie

Fundação para a Ciência e a Tecnologia

Spanish Ministerio de Ciencia e Innovación

Centro Superior de Investigaciones Científica

Unidad de Excelencia María de Maeztu

European Social Fund

Millennium Science Initiative

Department of Economic Transformation, Industry, Knowledge, and Universities of the Regional Government of Andalusia

Research Council of Finland

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3