Revisiting the rovibrational (de-)excitation of molecular hydrogen by helium

Author:

Jóźwiak HubertORCID,Thibault FranckORCID,Viel AlexandraORCID,Wcisło PiotrORCID,Lique FrançoisORCID

Abstract

Context. The collisional (de-)excitation of H2 by He plays an important role in the thermal balance and chemistry of various astro-physical environments, making accurate rate coefficients essential for interpreting observations of the interstellar medium. Aims. Our goal is to utilize a state-of-the-art potential energy surface (PES) to provide comprehensive state-to-state rate coefficients for He-induced transitions among rovibrational levels of H2. Methods. We performed quantum scattering calculations for the H2-He system. Thus, we were able to provide state-to-state rate coefficients for 1059 transitions between rovibrational levels of H2, with internal energies up to ≃15 000 cm−1, for temperatures ranging from 20 to 8000 K. Results. Our results demonstrate a good agreement with previous calculations for pure rotational transitions between low-lying rotational levels. However, we do find significant discrepancies for rovibrational processes involving highly-excited rotational and vibrational states. We attribute these differences to two key factors: (1) the broader range of intramolecular distances covered by ab initio points and (2) the superior accuracy of the PES, resulting from the utilization of the state-of-the-art quantum chemistry methods, compared to previous lower-level calculations. Conclusions. Radiative transfer calculations performed with the new collisional data indicate that the population of rotational levels in excited vibrational states experiences significant modifications, highlighting the critical need for this updated dataset in models of high-temperature astrophysical environments.

Funder

Université de Rennes 1

Fundacja na rzecz Nauki Polskiej

Narodowe Centrum Nauki

European Research Council

Centre National de la Recherche Scientifique

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3