The enigmatic dance of the HD 189733A system: A quest for accretion

Author:

Colombo S.ORCID,Pillitteri I.ORCID,Petralia A.ORCID,Orlando S.ORCID,Micela G.ORCID

Abstract

Context. Several studies suggest that the emission properties of a star can be significantly affected by its interaction with a nearby planet through magnetic fields or interaction between their respective winds. However, the actual observability of these effects remains a subject of debate. An illustrative example is the HD 189733A system: certain characteristics of its emissions have been interpreted as indicative of ongoing interactions between the star and its associated planet. Other studies attribute these characteristics to the coronal activity of the star. Aims. In this study we aimed to investigate whether the observed stellar X-ray flare events, which appear to be in phase with the planetary period in the HD 189733A system, could be attributed to the accretion of the planetary wind onto the stellar surface or if they resulted from an interaction between the planetary and stellar winds. Methods. We developed a 3D magnetohydrodynamic model with the PLUTO code that describes the system HD 189733A , including the central host star and its hot Jupiter along with their respective winds. The effects of gravity and the magnetic fields of both the star and the planet are taken into account. Results. Our analysis reveals that, in the cases examined in this study, the accretion scenario is only viable when the stellar magnetic field strength is at 5 G and the planetary magnetic field strength is at 1 G. In this scenario, the Rayleigh-Taylor instabilities lead to the formation of an accretion column that connects the star to the planet. Once formed the accretion column remains stable for the duration of the simulation. The accretion column produces an accretion rate of the order of 1012 g s−1 and shows an average density of about 107 cm−3. In the other case explored, the accretion column does not form because the Rayleigh-Taylor instability is suppressed by the stronger magnetic field intensities assumed for both the star and the planet. We synthesized the emission resulting from the shocked planetary wind and found that the total X-ray emission ranges from 5 × 1023 to 1024 erg s−1. Conclusions. In the case of accretion, the emission originating from the hotspot cannot be distinguished from the coronal activity. Also, the interaction between the planetary and stellar winds cannot be responsible for the X-ray emission, as the total emission produced is about four orders of magnitude lower than the average X-ray luminosity of the star.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3