Dynamics of the β Pictoris planetary system and its falling evaporating bodies

Author:

Beust H.ORCID,Milli J.ORCID,Morbidelli A.ORCID,Lacour S.ORCID,Lagrange A.-M.ORCID,Chauvin G.ORCID,Bonnefoy M.ORCID,Wang J.ORCID

Abstract

Context. For decades, the spectral variations of β Pictoris have been modelled as the result of the evaporation of exocomets close to the star, termed falling evaporating bodies (FEBs). Resonant perturbations by a hypothetical giant planet have been proposed to explain the dynamical origin of these stargrazers. The disk is now known to harbour two giant planets, β Pic b and c, orbiting the star at 9.9 and 2.7 au. While the former almost matches the planet formerly suspected, the recent discovery of the latter complicates the picture. Aims. We first question the stability of the two-planet system. Then we investigate the dynamics of a disk of planetesimals orbiting the star together with both planets to check the validity of the FEB generation mechanism. Methods. Symplectic N-body simulations are used to first determine which regions of the planetesimal disk are dynamically stable and which are not. Then we focus on regions where disk particles are able to reach high eccentricities, mainly thanks to resonant mechanisms. Results. The first result is that the system is dynamically stable. Both planets may temporarily fall in 7:1 mean-motion resonance (MMR). Then, simulations with a disk of particles reveal that the whole region extending between ~l.5 au and ~25 au is unstable to planetary perturbations. However, a disk below 1.5 au survives, which appears to constitute an active source of FEBs via high-order MMRs with β Pic c. In this new picture, β Pic b acts as a distant perturber that helps sustain the whole process. Conclusions. Our new simulations rule out the preceding FEB generation mechanism model, which placed their origin at around 4–5 au. Conversely, FEBs are likely to originate from a region much further in and related to MMRs with β Pic c. That mechanism also appears to last longer, as new planetesimals are able to continuously enter the MMRs and evolve towards the FEB state. Subsequently, the physical nature of the FEBs may differ from that previously thought, and presumably may not be icy.

Funder

European Research Council

European Southern Observatory

Agence Nationale de la Recherche

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3