PDRs4All

Author:

Pasquini SofiaORCID,Peeters ElsORCID,Schefter BethanyORCID,Khan Baria,Sidhu AmeekORCID,Chown RyanORCID,Cami JanORCID,Tielens AlexanderORCID,Alarcón FelipeORCID,Canin AmélieORCID,Schroetter IlaneORCID,Trahin BorisORCID,Van De Putte DriesORCID,Boersma ChristiaanORCID,Dartois EmmanuelORCID,Onaka TakashiORCID,Candian AlessandraORCID,Hartigan PatrickORCID,Lai Thomas S.-Y.ORCID,Rouillé GaëlORCID,Sales Dinalva A.ORCID,Zhang YongORCID,Bernard-Salas JeronimoORCID,Habart EmilieORCID,Berné OlivierORCID

Abstract

Context. Extraordinary observations of the Orion Bar by JWST have shown, for the first time, the incredible richness of polycyclic aromatic hydrocarbon (PAH) emission bands and their variation on very small scales. These variations are the result of photochemical evolution of the PAH carrier. Aims. We aim to probe the photochemical evolution of PAHs across the key zones of the ideal photodissociation region (PDR) that is the Orion Bar using unsupervised machine learning. Methods. We used JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science programme PDRs4All (ID: 1288). We levered bisecting k-means clustering to generate highly detailed spatial maps of the spectral variability in the 3.2–3.6, 5.95–6.6, 7.25–8.95, and 10.9–11.63 μm wavelength regions. We analysed and subsequently described the variations in the cluster profiles and connected them to the conditions of the physical locations from which they arise. We interpreted the origin of the observed variations with respect to the following key zones: the H II region, the atomic PDR zone, and the layers of the molecular PDR zone stratified by the first, second, and third dissociation fronts (DF 1, DF 2, and DF 3, respectively). Results. Observed PAH emission exhibits spectral variation that is highly dependent on the spatial position in the PDR. We find the 8.6 μm band to behave differently than all other bands, which vary systematically with one another. Notably, we find a uniform variation in the 3.4–3.6 μm bands and 3.4/3.3 intensity ratio. We attribute the carrier of the 3.4–3.6 μm bands to a single side group attached to very similarly sized PAHs. Further, cluster profiles reveal a transition between characteristic profile classes of the 11.2 μm feature from the atomic to the molecular PDR zones. We find the carriers of each of the profile classes to be independent, and reason the latter to be PAH clusters existing solely deep in the molecular PDR. Clustering also reveals a connection between the 11 .2 and 6.2 μm bands and that clusters generated from variation in the 10.9–11.63 μm region can be used to recover those in the 5.95–6.6 μm region. Conclusions. Clustering is a powerful and comprehensive tool for characterising PAH spectral variability on both spatial and spectral scales. For individual bands as well as global spectral behaviours, we find ultraviolet processing to be the most important driver of the evolution of PAHs and their spectral signatures in the Orion Bar PDR.

Funder

NASA

NSERC

CSA

Spinoza

San José State University

JSPS

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3