Investigating black hole accretion disks as potential polluter sources for the formation of enriched stars in globular clusters

Author:

Fréour LauraneORCID,Zocchi AliceORCID,van de Ven GlennORCID,Pancino ElenaORCID

Abstract

Accretion disks surrounding stellar mass black holes have been suggested as potential locations for the nucleosynthesis of light elements, which are our primary observational discriminant of multiple stellar populations within globular clusters. The population of enriched stars in globular clusters are enhanced in 14N, 23Na, and sometimes in 27Al and/or in 39K. In this study, our aim is to investigate the feasibility of initiating nucleosynthesis for these four elements in black hole accretion disks, considering various internal parameters such as the temperature of the gas and timescale of the accretion. To achieve this, we employed a 132-species reaction network. We used the slim disk model, suitable for the Super-Eddington mass accretion rate and for geometrically and optically thick disks. We explored the conditions related to the mass, mass accretion rate, viscosity, and radius of the black hole-accretion disk system that would allow for the creation of 14N, 23Na, 27Al, and 39K before the gas is accreted onto the central object. This happens when the nucleosynthesis timescale is shorter than the viscous timescale. Our findings reveal that there is no region in the parameter space where the formation of 23Na can occur and only a very limited region where the formation of 14N, 27Al, and 39K is plausible. Specifically, this occurs for black holes with masses lower than 10 solar masses (m < 10 M), with a preference toward even lower mass values (m < 1 M) and extremely low viscosity parameters (α < 10−3). Such values are highly unlikely based on current observations of stellar mass black holes. However, such low mass black holes could actually exist in the early universe, as so-called primordial black holes. In conclusion, our study suggests that the nucleosynthesis within black hole accretion disks of elements of interest for the multiple stellar populations, namely, 14N, 23Na, 27Al, and 39K is improbable, but not impossible, using the slim disk model. Future gravitational wave missions will help constrain the existence of tiny and light black holes.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3