Abstract
Context. According to the hierarchical structure formation model, brightest cluster galaxies (BCGs) evolve into the most luminous and massive galaxies in the Universe through multiple merger events. The peculiar radio source 4C 35.06 is located at the core of the galaxy cluster Abell 407, overlapping with a compact group of nine galaxies. Low-frequency radio observations have revealed a helical, steep-spectrum, kiloparsec-scale jet structure and inner lobes with less steep spectra, compatible with a recurring active galactic nucleus (AGN) activity scenario. However, the host galaxy of the AGN responsible for the detected radio emission remained unclear.
Aims. We aim to identify the host of 4C 35.06 by studying the object at high angular resolution and thereby confirm the recurrent AGN activity scenario.
Methods. To reveal the host of the radio source, we carried out very long baseline interferometry (VLBI) observations with the European VLBI Network of the nine galaxies in the group at 1.7 and 4.9 GHz.
Results. We detected compact radio emission from an AGN located between the two inner lobes at both observing frequencies. In addition, we detected another galaxy at 1.7 GHz, whose position appears more consistent with the principal jet axis and is located closer to the low-frequency radio peak of 4C 35.06. The presence of another radio-loud AGN in the nonet sheds new light on the BCG formation and provides an alternative scenario in which not just one but two AGNs are responsible for the complex large-scale radio structure.
Funder
European Commission Horizon 2020 Research and Innovation Programme
Hungarian National Re- search, Development and Innovation Office
NASA