The 3D structure of disc-instability protoplanets

Author:

Fenton Adam,Stamatellos DimitrisORCID

Abstract

Context. The model of disc fragmentation due to gravitational instabilities offers an alternate formation mechanism for gas giant planets, especially those on wide orbits. Aims. Our goal is to determine the 3D structure of disc-instability protoplanets and to examine how this relates to the thermal physics of the fragmentation process. Methods. We modelled the fragmentation of gravitationally unstable discs using the SPH code PHANTOM, and followed the evolution of the protoplanets formed through the first and second-hydrostatic core phases (up to densities 10−3 g cm−3). Results. We find that the 3D structure of disc-instability protoplanets is affected by the disc environment and the formation history of each protoplanet (e.g. interactions with spiral arms, mergers). The large majority of the protoplanets that form in the simulations are oblate spheroids rather than spherical, and they accrete faster from their poles. Conclusions. The 3D structure of disc-instability protoplanets is expected to affect their observed properties and should be taken into account when interpreting observations of protoplanets embedded in their parent discs.

Funder

Science and Technology Facilities Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3