Excitation mechanisms of C II optical permitted lines in ionized nebulae

Author:

Reyes-Rodríguez E.ORCID,Méndez-Delgado J. E.ORCID,García-Rojas J.ORCID,Binette L.ORCID,Nemer A.ORCID,Esteban C.ORCID,Kreckel K.ORCID

Abstract

Context. Carbon is the fourth most abundant element in the universe and its distribution is critical to understanding stellar evolution and nucleosynthesis. In optical studies of ionized nebulae, the only way to determine the C/H abundance is by using faint C II recombination lines (RLs). However, these lines give systematically higher abundances than their collisionally excited counterparts, observable at ultraviolet (UV) wavelengths. Therefore, a proper understanding of the excitation mechanisms of the faint permitted lines is crucial for addressing this long-standing abundance discrepancy (AD) problem. Aims. In this study, we investigate the excitation mechanisms of C II lines λλ3918, 3920, 4267, 5342, 6151, 6462, 7231, 7236, 7237, and 9903. Methods. We use the DEep Spectra of Ionized REgions Database (DESIRED) that contains spectra of H II regions, planetary nebulae and other objects to analyze the fluorescence contributions to these lines and the accuracy of the atomic recombination data used to model the C+ ion. Results. We find that C II λλ4267, 5342, 6151, 6462, and 9903 arise exclusively from recombinations with no fluorescent contributions. In addition, the recombination theory for these lines is consistent with the observations. Our findings show that the AD problem for C2+ is not due to fluorescence in the widely used C II lines or errors in their atomic parameters, but to other phenomena such as temperature variations or chemical inhomogeneities. On the other hand, C II λλ3918, 3920, 6578, 7231, 7236, 7237 have important fluorescent contributions, which are inadvisable for tracing the C2+ abundances. We also discuss the effects of possible inconsistencies in the atomic effective recombination coefficients of C II λλ6578, 7231, 7236, and 7237.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3