CON-quest

Author:

Nishimura Y.ORCID,Aalto S.,Gorski M. D.ORCID,König S.ORCID,Onishi K.,Wethers C.,Yang C.ORCID,Barcos-Muñoz L.,Combes F.ORCID,Díaz-Santos T.,Gallagher J. S.ORCID,García-Burillo S.ORCID,González-Alfonso E.,Greve T. R.,Harada N.ORCID,Henkel C.,Imanishi M.ORCID,Kohno K.,Linden S. T.,Mangum J. G.ORCID,Martín S.ORCID,Muller S.,Privon G. C.,Ricci C.,Stanley F.ORCID,van der Werf P. P.ORCID,Viti S.

Abstract

Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3−2 and HCO+J = 3−2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ∼0.3″ (∼50−400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ∼0.5−4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.

Funder

JSPS

NAOJ

European Research Council

University of Wisconsin College of Letters and Science

Spanish MICINN

Fondecyt

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3