Simulating radio-off fractions in rotating radio transients

Author:

Yuen R.

Abstract

Aims. We aim to simulate the proportions of non-detectable emission, measured as radio-off fractions (foff), in rotating radio transients (RRATs). We also investigate the properties related to the underlying mechanism for such sporadic emission. Methods. From observations of intermittent pulsars, radio emission originates from two distinct emission states and it becomes non-detectable when the pulsar switches to an emission state characterized by magnetospheric plasma density of zero. We performed simulations of foff based on 10 000 samples, each with 10 000 rotations and using a model that tracks changes in the plasma density in a pulsar magnetosphere with multiple emission states. We assumed that (i) RRATs are radio pulsars, (ii) radio pulse intensity is correlated with the emitting plasma density as stated in the conventional models, and (iii) a pulse emission corresponds to a change in the plasma density under favorable conditions. Results. A best-fit distribution for foff is obtained when emission from RRATs is defaulted to radio-off. The resulting wait time distribution can be fitted by two functions of an exponential and a Gaussian, which is consistent with the observations. We demonstrate that the switch rate is low and that the burst rate is dependent on rotation period. In addition, the switch rate is related to the obliquity angle, which implies that the mechanism varies over time. Our results suggest that switching to radio-on is a random process, which implies that the burst rate is different for different RRATs. We show that RRAT emission and pulse nulling may share similar origins, but with different default emission. We discuss how the emission may change from that of RRAT to pulse nulling (or vice versa) as a pulsar evolves.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3