Two shell- and wing-shaped supernova remnants

Author:

Arias MariaORCID,Zhou Ping,Chiotellis Alexandros,De Breuck CarlosORCID,Domček Vladimir,Boumis Panayotis,Vink Jacco,Derlopa Sophia,Akras StavrosORCID

Abstract

Supernova remnants (SNRs) are profoundly affected by their ambient medium. In particular, SNRs with a mixed morphology (characterised by a shell-like radio morphology and centrally filled X-ray emission) are thought to be the result of the interaction of a supernova explosion with a dense environment. In this work, we present carbon monoxide (CO) observations around two mixed morphology SNRs, VRO 42.05.01 and G 350.0-2.0, that look remarkably similar in continuum radio emission, showing what we refer to as a shell and wing shape. It has been proposed that the shell and wing shape is the result of environmental effects, in the form of a sharp density gradient or discontinuity. Therefore, our motivation for studying these two sources jointly is that if the dense molecular environment causes the development of these sources’ shell and wing shape, then these two sources’ environments must be similar. This is contrary to what we observe. In the case of VRO 42.05.01, we have found direct evidence of an interaction with its molecular environment, in the form of broadened 12CO line profiles, high 12CO (J = 2−1) to 12CO (J = 1−0) line ratios, and arc features in position-velocity space. We interpret some of these features to be associated with the SNR shock, and some of them to be due to the presence of a pre-supernova stellar wind. We have found no such features in the abundant molecular gas surrounding G 350.02.0. In addition to the spectral line analysis, we have used radio continuum data to make a spectral index map of G 350.0-2.0, and we see that the radio spectrum of G 350.0-2.0 steepens significantly at frequencies <200 MHz, much like that of VRO 42.05.01. In spite of their spectral and morphological similarities, these two sources look substantially different in their observed optical and infrared emission. The lack of large-scale correspondence between the radio continuum and the molecular material, in either case, as well as the differences in the excitation and morphological properties of the molecular gas surrounding both sources, lead us to conclude that the shell and wing morphology of these two sources is not due to interactions with a similar ambient molecular interstellar medium.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3