Toward mapping turbulence in the intra-cluster medium

Author:

Beaumont S.ORCID,Molin A.ORCID,Clerc N.ORCID,Pointecouteau E.ORCID,Vanel M.,Cucchetti E.,Peille P.,Pajot F.ORCID

Abstract

Context. Future X-ray observatories with high spectral resolution and imaging capabilities will enable measurements and mappings of emission line shifts in the intracluster medium (ICM). Such direct measurements can serve as unique probes of turbulent motions in the ICM. Determining the level and scales of turbulence will improve our understanding of the galaxy cluster dynamical evolution and assembly, together with a more precise evaluation of the non thermal support pressure budget. This will allow for more accurate constraints to be placed on the masses of galaxy clusters, among other potential benefits. Aims. In this view, we implemented the methods presented in the previous instalments of our work to characterising the turbulence in the intra-cluster medium in a feasibility study with the X-ray Integral Field Unit (X-IFU) on board the future European X-ray observatory, Athena. Methods. From idealized mock observations of a toy model cluster, we reconstructed the second-order structure function built with the observed velocity field to constrain the turbulence. We carefully accounted for the various sources of errors to derive the most realistic and comprehensive error budget within the limits of our approach. With prior assumptions on the dissipation scale and power spectrum slope, we constrained the parameters of the turbulent power spectrum model through the use of Markov chain Monte Carlo (MCMC) sampling. Results. With a very long exposure time, a favourable configuration, and a prior assumption of the dissipation scale, we were able to retrieve the injection scale, velocity dispersion, and power spectrum slope, with 1σ uncertainties for better than ∼15% of the input values. We demonstrated the efficiency of our carefully set framework to constrain the turbulence in the ICM from high-resolution X-ray spectroscopic observations, paving the way for more in-depth investigation of the optimal required observing strategy within a more restrictive observational setup with the future Athena/X-IFU instrument.

Funder

Institut national des sciences de l'Univers

Centre National d’Etudes Spatiales

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3