Narrow spectra of repeating fast radio bursts: A magnetospheric origin

Author:

Wang Wei-YangORCID,Yang Yuan-PeiORCID,Li Hong-Bo,Liu Jifeng,Xu RenxinORCID

Abstract

Fast radio bursts (FRBs) can present a variety of polarization properties and some of them are characterized by narrow spectra. In this work, we study spectral properties from the perspective of intrinsic radiation mechanisms and absorption through the waves propagating in the magnetosphere. The intrinsic radiation mechanisms are considered by invoking quasi-periodic bunch distribution and perturbations on charged bunches moving on curved trajectories. The narrowband emission is likely to reflect some quasi-periodic structure on the bulk of bunches, which may be due to quasi-periodically sparking in a “gap” or quasi-monochromatic Langmuir waves. A sharp spike would appear in the spectrum if the perturbations were to induce a monochromatic oscillation of bunches; however, it is difficult to create a narrow spectrum because the Lorentz factor has large fluctuations, so the spike disappears. Both the bunching mechanism and perturbations scenarios share the same polarization properties, with a uniformly distributed bulk of bunches. We investigated the absorption effects, including Landau damping and curvature self-absorption in the magnetosphere, which are significant at low frequencies. Subluminous O-mode photons cannot escape from the magnetosphere due to the Landau damping, leading to a height-dependent lower frequency cut-off. The spectra can be narrow when the frequency cut-off is close to the characteristic frequency of curvature radiation, however, such conditions cannot always be met. The spectral index is 5/3 at low-frequency bands due to the curvature self-absorption is not as steep as what is seen in observations. The intrinsic radiation mechanisms are more likely to generate the observed narrow spectra of FRBs, rather than the absorption effects.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3