Formation-flying interferometry in geocentric orbits

Author:

Ito TakahiroORCID

Abstract

Context. Spacecraft formation flying serves as a method of astronomical instrumentation that enables the construction of large virtual structures in space. The formation-flying interferometry generally requires very high control accuracy, and extraterrestrial orbits are typically selected. To pave the way for comprehensive missions, proposals have been made for preliminary space missions, involving nano- or small satellites, to demonstrate formation-flying interferometry technologies, especially in low Earth orbits. From a theoretical perspective, however, it is unknown where and to what extent feasible regions for formation-flying interferometry should exist in geocentric orbits. Aims. This study aims to demonstrate the feasibility of formation-flying interferometry in geocentric orbits in which various perturbation sources exist. Geocentric orbits offer the advantage of economic accessibility and the availability of proven formation-flying technologies tailored for Earth orbits. Its feasibility depends on the existence of specific orbits that satisfy a small-disturbance environment with good observation conditions. Methods. Spacecraft motions in Earth orbits subjected to perturbations are analytically modeled based on celestial mechanics. The magnitudes of the accelerations required to counteract these perturbations are characterized by parameters such as the semimajor axis and the size of the formation. Results. Small-perturbation regions tend to appear in higher-altitude and shorter-separation regions in geocentric orbits. Candidate orbits are identified in high Earth orbits for the triangular laser-interferometric gravitational-wave telescope, which is 100 km in size, and in medium Earth orbits for the linear astronomical interferometer, which is 0.5 km in size. A low Earth orbit with a separation of approximately 0.1 km may be suitable for experimental purposes. Conclusions. Geocentric orbits are potentially applicable for various types of formation-flying interferometry.

Funder

Japan Society for the Promotion of Science

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference28 articles.

1. Alfriend K. T., Vadali S. R., Gurfil P., How J., & Breger L. S. 2010, Spacecraft Formation Flying: Dynamics, Control and Navigation, Elsevier Astrodynamics Series (Elsevier)

2. Ashman B., Bauer F. H., Parker J., & Donaldson J. 2018, in 2018 SpaceOps Conference, https://arc.aiaa.org/doi/abs/10.2514/6.2018-2568

3. Solution of the problem of artificial satellite theory without drag

4. Terminal Guidance System for Satellite Rendezvous

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3