Abstract
A key feature of the Trappist-1 system is its monotonic decrease in bulk density with growing distance from the central star, which indicates an ice mass fraction that is zero in the innermost planets, b and c, and about 10% in planets d through h. Previous studies suggest that the density gradient of this system could be due to the growth of planets from icy planetesimals that progressively lost their volatile content during their inward drift through the protoplanetary disk. Here we investigate the alternative possibility that the planets formed in a dry protoplanetary disk populated with pebbles made of phyllosilicates, a class of hydrated minerals with a water fraction possibly exceeding 10 wt%. We show that the dehydration of these minerals in the inner regions of the disk and the outward diffusion of the released vapor up to the ice-line location allow the condensation of ice onto grains. Pebbles with water mass fractions consistent with those of planets d–h would have formed at the snow-line location. In contrast, planets b and c would have been accreted from drier material in regions closer to the star than the phyllosilicate dehydration line.
Funder
Agence Nationale de la Recherche
A*MIDEX
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献