Tracking active nests in solar-type pulsators: Ensemble starspot modelling of Kepler asteroseismic targets

Author:

Breton S. N.ORCID,Lanza A. F.ORCID,Messina S.ORCID

Abstract

The satellite Planetary Transits and Oscillations of stars (PLATO), due to be launched late 2026, will provide us with an unprecedented sample of light curves of solar-type stars that will exhibit both solar-type oscillations and signatures of activity-induced brightness modulations. Solar-type pulsators only have moderate levels of activity because high levels of activity inhibit oscillations. This means that these targets represent a specific challenge for starspot modelling. In order to assess the possibilities that PLATO will soon open, we wish to characterise the morphology of active regions at the surface of stars for which we also have a detection of solar-like acoustic oscillations. In this context, we report the results of an ensemble starspot modelling analysis of the Sun and ten solar-type pulsators observed by the Kepler satellite. We implement a Bayesian starspot modelling approach based on a continuous-grid model, accounting for the combined starspot and facular contribution to activity-induced brightness modulations. From our analysis, we find that several stars of our sample exhibit clear signatures of stable longitudinal active nests while sharing activity levels and convection versus rotation regimes similar to the solar regime. By searching for modulations in the reconstructed starspot coverage, we found significant periodicities that we identify as possible signatures of cyclic modulations similar to the quasi-biennal oscillation or the Rieger cycle. We can infer the corresponding intensity of the magnetic field at the bottom of the convective envelope based on the hypothesis that internal magneto-Rossby waves acting on the tachocline cause these modulations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3