Abstract
High-latitude intermediate-velocity clouds (IVCs) are part of the Milky Way’s H I halo and originate from either a galactic fountain process or extragalactic gas infall. They are partly molecular and can most of the time be identified in CO. Some of these regions also exhibit high-velocity cloud gas, which is mostly atomic, and gas at local velocities (LVCs), which is partly atomic and partly molecular. We conducted a study on the IVCs Draco and Spider, both were exposed to a very weak UV field, using the spectroscopic receiver upGREAT on the Stratospheric Observatory for Infrared Astronomy (SOFIA). The 158 µm fine-structure line of ionized carbon ([C II]) was observed, and the results are as follows: In Draco, the [C II] line was detected at intermediate velocities (but not at local or high velocities) in four out of five positions. No [C II] emission was found at any velocity in the two observed positions in Spider. To understand the excitation conditions of the gas in Draco, we analyzed complementary CO and H I data as well as dust column density and temperature maps from Herschel. The observed [C II] intensities suggest the presence of shocks in Draco that heat the gas and subsequently emit in the [C II] cooling line. These shocks are likely caused by the fast cloud’s motion toward the Galactic plane that is accompanied by collisions between H I clouds. The nondetection of [C II] in the Spider IVC and LVC as well as in other low-density clouds at local velocities that we present in this paper (Polaris and Musca) supports the idea that highly dynamic processes are necessary for [C II] excitation in UV-faint low-density regions.