Morphokinematical study of the planetary nebula Me2-1: Unveiling its point-symmetric and unusual physical structure

Author:

Miranda Luis F.ORCID,Vázquez RobertoORCID,Olguín LorenzoORCID,Guillén Pedro F.ORCID,Matías José M.ORCID

Abstract

Me 2-1 is a high-excitation planetary nebula whose morphology and physical structure have not yet been investigated. We present narrow-band images in several emission lines, and high- and intermediate-resolution long-slit spectra aimed at investigating its morphology and 3D structure, and its physical parameters and chemical abundances. By applying deconvolution techniques to the images, we identified in Me 2-1: an elliptical ring; two elongated, curved structures (caps) that contain three pairs of bright point-symmetric (PS) knots; a shell interior of the ring; and a faint halo or attached shell. The caps are observed in all images, while the PS knots are only observed in the low-excitation emission line ones. These structures are also identified in the high-resolution long-slit spectra, allowing us to study their morphokinematics. The 3D reconstruction shows that Me 2-1 consists of a ring seen almost pole-on, and a virtually spherical shell, to which the caps and PS knots are attached. Caps and PS knots most probably trace the sites where high-velocity collimated bipolar outflows, ejected along a wobbling axis, collide with the spherical shell, are slowed down, and remain attached to it. Although the main excitation mechanism in Me 2-1 is found to be photoionization, a contribution of shocks in the PS knots is suggested by their emission line ratios. The combination of collimated outflows and a ring with a spherical shell is unusual among planetary nebulae. We speculate that two planets, each with less than one Jupiter mass, could be involved in the formation of Me 2-1 if both enter a common envelope evolution during the asymptotic giant branch phase of the progenitor. One planet is tidally disrupted, forming an accretion disk around the central star, from which collimated bipolar outflows are ejected; the other planet survives, causing wobbling of the accretion disk. The physical parameters and chemical abundances obtained from our intermediate-resolution spectrum are similar to those obtained in previous analyses, with the abundances also pointing to a low-mass progenitor of Me 2-1.

Funder

Ministerio de Ciencia e Innovación

Consejería de Transformación Económica, Industria, Conocimiento y Universidades

European Regional Development Fund

UNAM-PAPIIT

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3