Making the unmodulated Pyramid wavefront sensor smart

Author:

Landman R.ORCID,Haffert S. Y.ORCID,Males J. R.,Close L. M.,Foster W. B.,Van Gorkom K.,Guyon O.,Hedglen A.,Kautz M.,Kueny J. K.,Long J. D.ORCID,Lumbres J.,McEwen E. A.,McLeod A.,Schatz L.

Abstract

Almost all current and future high-contrast imaging instruments will use a Pyramid wavefront sensor (PWFS) as a primary or secondary wavefront sensor. The main issue with the PWFS is its nonlinear response to large phase aberrations, especially under strong atmospheric turbulence. Most instruments try to increase its linearity range by using dynamic modulation, but this leads to decreased sensitivity, most prominently for low-order modes, and makes it blind to petal-piston modes. In the push toward high-contrast imaging of fainter stars and deeper contrasts, there is a strong interest in using the PWFS in its unmodulated form. Here, we present closed-loop lab results of a nonlinear reconstructor for the unmodulated PWFS of the Magellan Adaptive Optics extreme (MagAO-X) system based on convolutional neural networks (CNNs). We show that our nonlinear reconstructor has a dynamic range of >600 nm root-mean-square (RMS), significantly outperforming the linear reconstructor that only has a 50 nm RMS dynamic range. The reconstructor behaves well in closed loop and can obtain >80% Strehl at 875 nm under a large variety of conditions and reaches higher Strehl ratios than the linear reconstructor under all simulated conditions. The CNN reconstructor also achieves the theoretical sensitivity limit of a PWFS, showing that it does not lose its sensitivity in exchange for dynamic range. The current CNN’s computational time is 690 µs, which enables loop speeds of >1 kHz. On-sky tests are foreseen soon and will be important for pushing future high-contrast imaging instruments toward their limits.

Funder

European Research Council

Heising-Simons Foundation

NSF MRI

Publisher

EDP Sciences

Reference52 articles.

1. Non-modulated pyramid wavefront sensor

2. Asif U., Tang J., & Harrer S. 2019, arXiv e-prints [arXiv: 1909.08097]

3. Confusion in differential piston measurement with the pyramid wavefront sensor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3