Abstract
Context. The study of the physics of the accretion discs that develop around supermassive black hole (BH) candidates provides essential theoretical tools to test their nature.
Aims. Here, we study the accretion flow and associated emission using generalised α-discs accreting onto horizonless dark compact objects in order to make comparisons with the traditional BH scenario. The BH alternative proposed here consists in a dense and highly degenerate core made of fermionic dark matter (DM) and surrounded by a more diluted DM halo. This dense core–diluted halo DM configuration is a solution of Einstein’s equation of general relativity (GR) in spherical symmetry, which naturally arises once the quantum nature of the DM fermions is duly accounted for.
Methods. The methodology followed in this work consists in first generalising the theory of α-discs to work in the presence of regular and horizonless compact objects, and then applying it to the case of core–halo DM profiles typical of active-like galaxies.
Results. The fact that the compactness of the dense and transparent DM core scales with particle mass allows the following key findings of this work: (i) There is always a given core compacity – corresponding particle mass – that produces a luminosity spectrum that is almost indistinguishable from that of a Schwarzschild BH of the same mass as the DM core. (ii) The disc can enter deep inside the non-rotating DM core, allowing accretion-powered efficiencies of as high as 28%, which is comparable to that of a highly rotating Kerr BH.
Conclusions. These results, together with the existence of a critical DM core mass of collapse into a supermassive BH, open new avenues of research for two seemingly unrelated topics: AGN phenomenology and dark matter physics.
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas
Agencia Nacional de Promoción Científica y Tecnológica
Universidad Nacional de La Plata
icranet