The cylindrical jet base of M 87 within 100 μas of the central engine

Author:

Punsly B.

Abstract

A recent article on high-resolution 86 GHz observations with the Global Millimeter VLBI Array, the phased Atacama Large Millimeter/submillimeter Array, and the Greenland Telescope describes the detection of a limb-brightened cylindrical jet, 25 μas < z < 100 μas, where z is the axial displacement from the supermassive black hole in the sky plane. It was shown to be much wider and much more collimated than 2D simulations of electromagnetic (Blandford-Znajek) jets from the event horizon predicted. This was an unanticipated discovery. The claimed detection of a jet connected to the accretion flow provides a direct observational constraint on the geometry and physics of the jet launching region for the first time in any black hole jetted system. This landmark detection warrants further analysis. This Letter focuses on the most rudimentary properties, the shape and size of the source of the detected jet emission, the determination of which is not trivial due to line-of-sight effects. Simple thick-walled cylindrical shell models for the source were analyzed to constrain the thickness of the jet wall. The analysis indicates a tubular jet source with a radius R ≈ 144 μas ≈ 38M and that the tubular jet walls have a width W ≈ 36 μas ≈ 9.5M, where M is the geometrized mass of the black hole (a volume comparable to that of the interior cavity). The observed cylindrical jet connects continuously to the highly limb-brightened jet (previously described as a thick-walled tubular jet) that extends to z > 0.65 mas, and the two are likely in fact the same outflow (i.e., from the same central engine).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3