The galaxy cluster AC114

Author:

Andrade A.,Saviane I.,Monaco L.ORCID,Yegorova I.,Proust D.

Abstract

Context. The mass-metallicity relation (MZR) is a powerful tool to constrain internal physical processes that drive the chemical evolution of galaxies. However, the construction of this relation is carried out with field star-forming galaxies in big data surveys where environmental effects are either negligible or not studied in detail. Aims. We study the role of galaxy clusters in the MZR and its evolution at z = 0.317 with star-forming members of AC114 (ABELL S1077). The purpose of this work is to understand how both the environmental effects and dynamical events modify the chemical evolution in this galaxy cluster. Methods. Spectroscopic VIMOS/VLT data was used to select cluster members and classify the galaxy sample in star-forming and passive galaxies. Gas-phase metallicities were estimated by using the strong-line method O3N2 calibrated on Te-based oxygen abundances. Available optical and near-infrared photometry from DECaLS DR10 and the VIKING DR4 ESO survey was used to derive the stellar mass of the galaxy sample. Results. AC114 is dominated by passive galaxies located in the central region of the cluster, whereas the star-forming members tend to be located outside this region. The constructed MZR from the latter indicates that star-forming galaxies have a lower metal content than foreground galaxies (spanning redshifts up to z = 0.28), and the same or even lower metallicities with respect to background galaxies (spanning redshifts 0.34–0.70). Additionally, it shows a higher scatter of σ = 0.17 dex, consistent with MZRs of galaxy clusters reported in the literature. The MZR at z = 0.317 is downshifted by 0.19 dex on average with respect to local galaxies. Comparing the AC114-MZR with the field MZR at the same redshift, two galaxies are found to be more metal-rich than the field ones by ∼0.10 dex. Likely as a result of ram-pressure stripping, star-forming galaxies deviate more from the MZR than field galaxies at the same redshift. Star-forming galaxies in the cluster are in general metal-poorer than field galaxies at the same redshfit up to ∼0.22 dex, and show a MZR that is slightly shallower in slope compared with that of field galaxies. With a redshift analysis, three substructures were identified: star-forming galaxies in the main component show a higher scatter of 0.20 dex in metallicity than both the front and back ones, with a scatter of 0.07 and 0.11 dex, respectively. Star-forming galaxies located outside the central region of AC114 are driving the shallower slope of the cluster MZR. Conclusions. The slightly shallower slope and high scatter of AC114 with respect to foreground and background galaxies in the mass-metallicity plane indicates that galaxies are suffering from environmental and dynamical effects. Ram-pressure stripping and strangulation are likely the main drivers in increasing the metallicities of at least two star-forming members with respect to the field MZR at the same redshift. However, the lower metallicities of the star-forming members, which drive the flatter slope of the AC114-MZR, can be explained by strong metal-poor inflows triggered by galaxy-galaxy interactions. In fact, the downshift reported for these galaxies is consistent with other observations and simulations, as a result of mergers and/or flybys, which dilute the gas-phase metallicities from metal-poor inflows. The mass of a galaxy cluster appears to be a key variable in determining the importance of environmental effects in the evolution of cluster members, where massive galaxy clusters (Mvir > 1015M) show changes in the slope of the MZR.

Publisher

EDP Sciences

Reference93 articles.

1. Active galactic nuclei and galaxy interactions

2. Aller L. H. 1984, Astrophysics and Space Science Library (Dordrecht: Reidel), 1984

3. Astropy-Specutils Development Team 2019, Astrophysics Source Code Library [record ascl:1902.012]

4. Classification parameters for the emission-line spectra of extragalactic objects

5. Tidally Triggered Star Formation in Close Pairs of Galaxies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3